Mathematics test

Paper 1 Calculator not allowed

First name	
Last name	
School	

Remember

- The test is 1 hour long.
- You **must not** use a calculator for any question in this test.
- You will need: pen, pencil, rubber, ruler and a pair of compasses.
- Some formulae you might need are on page 2.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper do not use any rough paper. Marks may be awarded for working.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

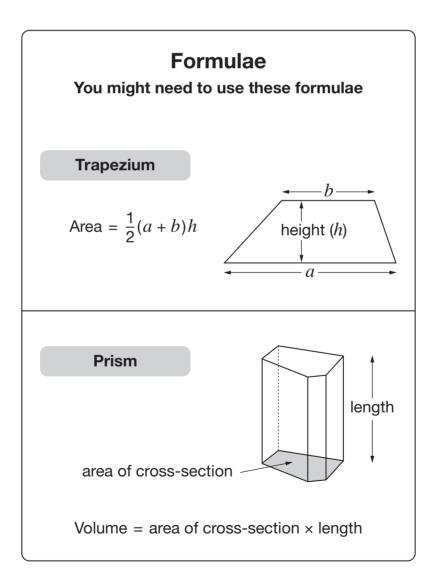
For marker's use only

TOTAL MARKS

Instructions

Answers

This means write down your


answer or show your working

and write down your answer.

Calculators

You **must not** use a calculator to answer any question in this test.

x = 8 When x = 8, what is the value of 5x? (a) 1. Tick (\checkmark) the correct box below. 5 13 40 None of these 58 1 mark When x = 8, what is the value of 3x - x? (b) Tick (\checkmark) the correct box below. None of these 0 3 16 30 1 mark When x = 8, what is the value of x^2 ? (C) Tick (\checkmark) the correct box below. 10 16 8 64 None of these 1 mark

2. Lisa uses a grid to multiply 23 by 15

×	20	3
10	200	30
5	100	15

200 + 100 + 30 + 15 = 345

Answer: 345

Now Lisa multiplies two different numbers.

Complete the grid, then give the answer below.

×		40	3
30			
	600		18

Answer:	
	 3 marks

4

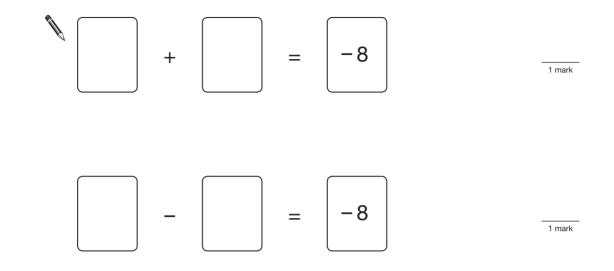
1 mark

1 mark

3. Fred has a bag of sweets.

He is going to take a sweet from the bag at random.

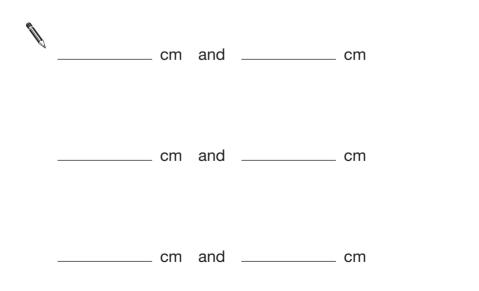
(a) What is the **probability** that Fred will get a **black** sweet?


(b) Write the missing **colour** in the sentence below.

The probability that Fred will get a _____ sweet is $\frac{1}{4}$

Ø

2 marks


4. Write a number in each box to make the calculations correct.

5. A rectangle has an **area** of **24 cm²**

How long could the sides of the rectangle be?

Give three **different** examples.

6. (a) Write the missing numbers.

50% of 80 = _____ 5% of 80 = _____

1% of 80 =

2 marks

1 mark

(b) Work out 56% of 80

You can use part (a) to help you.

1 mark

1 mark

7. Look at this equation.

y = 2x + 10

Ø

(a) When x = 4, what is the value of *y*?

(b) When x = -4, what is the value of *y*?

(c) Which equation below gives the same value of *y* for both *x* = 4 and *x* = −4?
Put a ring round the correct equation.

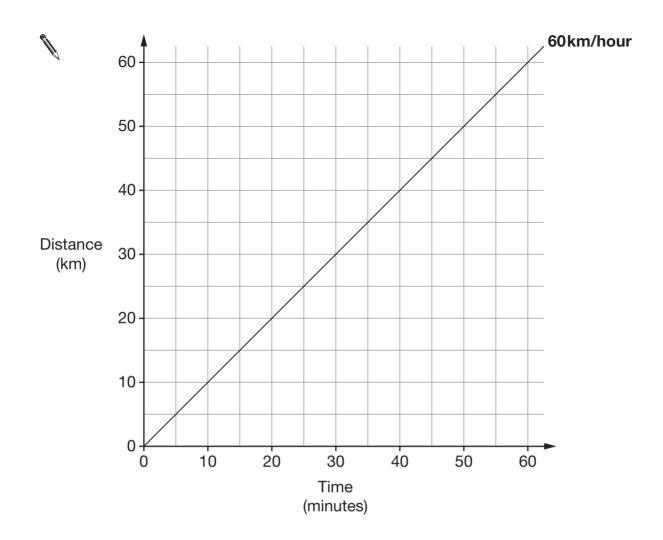
$$y = 2x$$
 $y = 2 + x$ $y = x^2$ $y = \frac{x}{2}$ $\frac{1}{1 \text{ mark}}$

2 marks

8. The diagram shows four different sized barrels.

Barrel A	Barrel B	Barrel C	Barrel D
holds	holds	holds	holds
54 gallons	36 gallons	18 gallons	9 gallons

Write the missing fractions **as simply as possible**.


The first one is done for you.

Barrel C holds	$\frac{1}{2}$	of the amount barrel B holds.
Barrel D holds		of the amount barrel B holds.
Barrel C holds		of the amount barrel A holds.
Barrel B holds		of the amount barrel A holds.

1 mark

1 mark

9. The line on the graph below represents a speed of 60km/hour.

- (a) Draw a line on the graph to represent a speed of 30 km/hour.Label the line by writing 30 km/hour.
- (b) Now draw a line on the graph to represent a speed of 120 km/hour.Label the line by writing 120 km/hour.

1 mark

2 marks

10. (a) In this design, the ratio of grey to black is 3:1

What percentage of the design is black?

%

(b) In this design, **60%** is **grey** and the rest is black.

What is the ratio of **grey to black**? Write your ratio in its simplest form.

÷


- **11.** In a bag there are only red, blue and green counters.
 - (a) I am going to take a counter out of the bag at random.

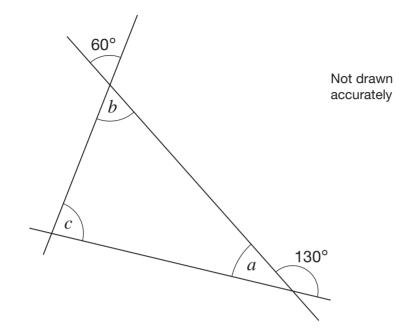
Complete the table below.

_	Colour of counters	Number of counters	Probability
N	Red	6	
	Blue		$\frac{1}{5}$
	Green	6	

2 marks

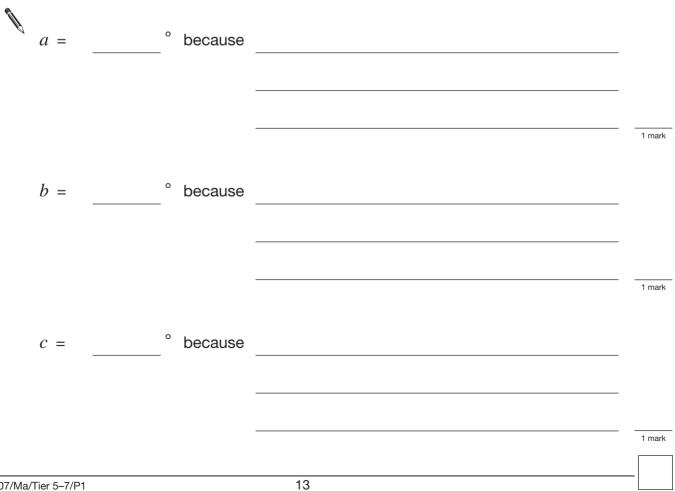
(b) Before I take a counter out of the bag, I put one extra blue counter into the bag.
 What effect does this have on the probability that I will take a red counter?
 Tick (✓) the correct box.

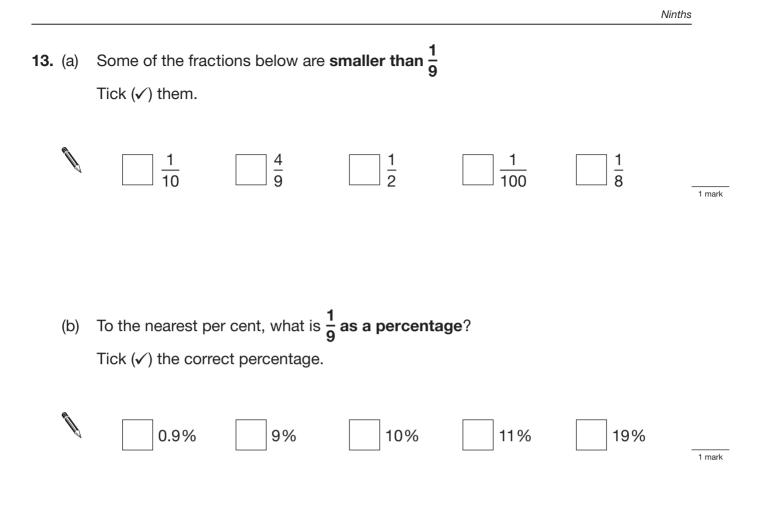
The probability has decreased.


The probability has stayed the same.

It is impossible to tell.

1 mark


Ŋ


12. The diagram shows three straight lines.

Work out the sizes of angles a, b and c

Give reasons for your answers.

Complete the sentence below by writing a fraction. (C)

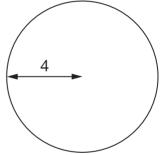
 $\frac{1}{9}$ is half of

1 mark

Equation, Circle working

14. Solve this equation.

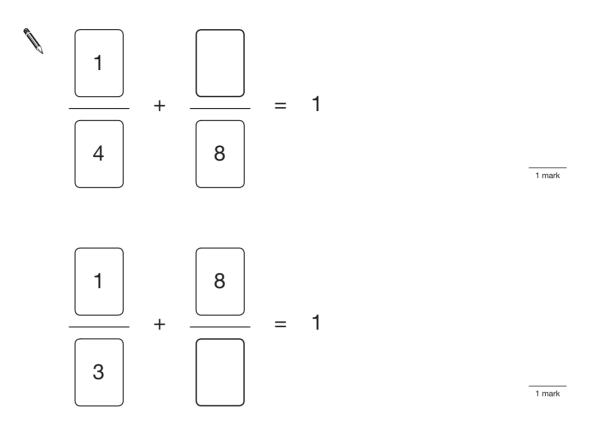
$$2(2n + 5) = 12$$


n =_____2 marks

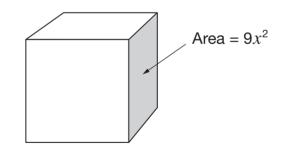
15. Kevin is working out the **area** of a circle with **radius 4**

He writes:

Ø


Area = $\pi \times 8$

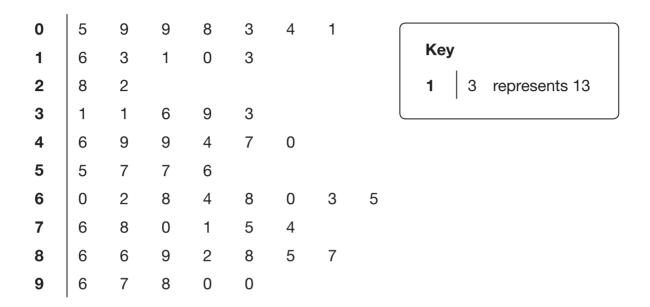
Explain why Kevin's working is **wrong**.


1 mark

16. Write the missing numbers in these fraction sums.

17. Look at the cube.

The area of a **face** of the cube is $9x^2$



Write an expression for the **total surface area** of the cube.

Write your answer as simply as possible.

18. Chris read the first 55 numbers from a book of random numbers.

As he read each number he recorded it in the diagram below.

Ø

(a) What was the largest number he recorded?

(b) Explain how Chris could change the diagram to make it easier for him to find the **median** of his data set.

1 mark

1 mark

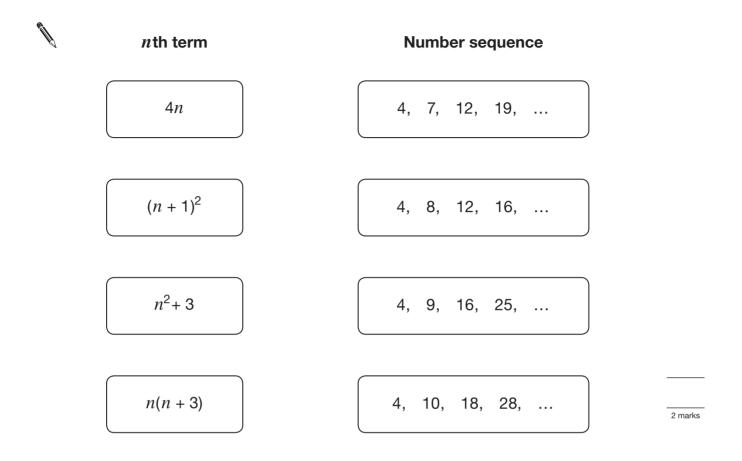
19. Here is the rule to find the **geometric mean** of two numbers.

Multiply the two numbers together, then find the **square root** of the result.

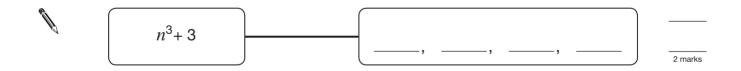
Example: geometric mean of 4 and 9 = $\sqrt{4 \times 9}$ = $\sqrt{36}$ = 6

(a) For the two numbers **10** and *x*, the geometric mean is **30**What is the value of *x*?

1 mark

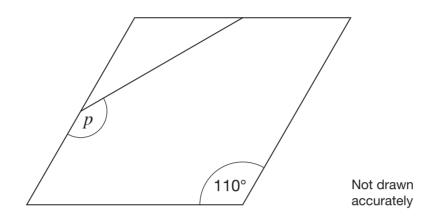

(b) Reena says:

'For the two numbers -2 and 8, it is impossible to find the geometric mean.'

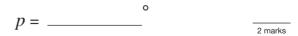

Is Reena correct?

Yes	No
Explain your answer.	

20. (a) **Draw lines** to match each *n*th term rule to its number sequence.



(b) Write the **first four** terms of the number sequence using the *n*th term rule below.


21. The diagram shows a **rhombus**.

The midpoints of two of its sides are joined with a straight line.

What is the size of angle p?

Ø

22. A bag contains counters that are **red**, **black**, or **green**.

 $\frac{1}{3}$ of the counters are **red**

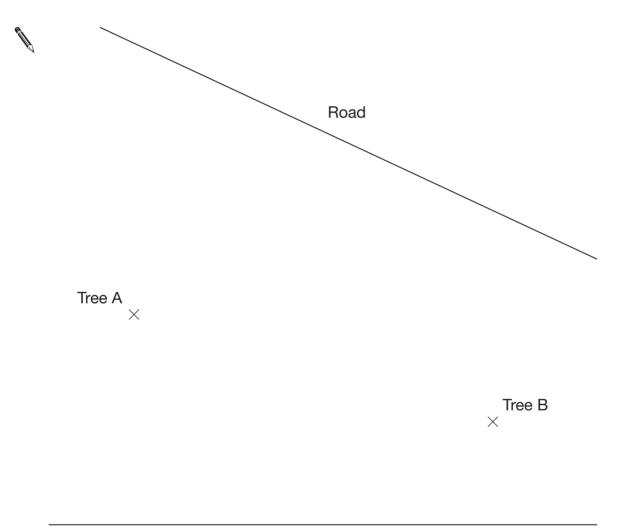
 $\frac{1}{6}$ of the counters are **black**

There are **15 green** counters in the bag.

How many **black** counters are in the bag?

2 marks

Ŋ


2 marks

23. Here is a plan of some land.

There will be a fence that is always the **same distance** from tree A as from tree B, going all the way from one road to the other road.

Use compasses and a straight edge to show accurately on the plan where the fence will go.

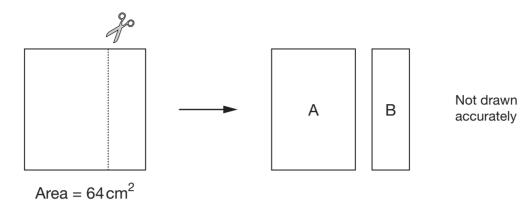
You **must** leave in your construction lines.

1 mark

Powers

24. Work out the values of *m* and *n*

$$5^8 \times 5^4 = 5^m$$



2 marks

25. A **square** of area **64cm²** is cut to make two rectangles, A and B.

The ratio of area A to area B is 3:1

Work out the dimensions of rectangles A and B.

Rectangle A: _____ cm by _____ cm

Rectangle B: _____ cm by _____ cm

N

Coins

26. A teacher has some coins in his pocket.

He is going to take one of the coins at random.

He says:

There are more than four coins in my pocket.

The total value of the coins is **25p**.

The probability that I will take a **1p** coin is $\frac{1}{4}$

List **all the coins** that must be in his pocket.

2 marks

END OF TEST

END OF TEST