Mathematics test

Paper 1

Calculator not allowed

Please read this page, but do not open your booklet until your teacher tells you to start. Write your name and the name of your school in the spaces below.

First name _______________________________________

Last name _______________________________________

School _______________________________________

Remember

- The test is 1 hour long.
- You must not use a calculator for any question in this test.
- You will need: pen, pencil, rubber, ruler and tracing paper (optional).
- Some formulae you might need are on page 2.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper – do not use any rough paper. Marks may be awarded for working.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

For marker’s use only

Total marks

PrimaryTools.co.uk
Instructions

Answers

This means write down your answer or show your working and write down your answer.

Calculators

You must not use a calculator to answer any question in this test.

Formulae

You might need to use these formulae

Trapezium

Area = \(\frac{1}{2} (a + b)h \)

Prism

Volume = area of cross-section \(\times \) length
1. Write the missing numbers on the number lines.

-8

+3

\[\square \ \square \]

-3

\[\square \ \square \]

+6

+6

\[\square \ \square \]

1 mark

2 marks
2. Look at the diagrams on the centimetre square grid. Work out the area that is shaded on each diagram.

\[\text{cm}^2 \]

\[\text{cm}^2 \]

\[\text{cm}^2 \]

\[\text{cm}^2 \]

2 marks
3. (a) Add together 3.7 and 6.5

(b) Subtract 5.7 from 15.2

(c) Multiply 254 by 5

(d) Divide 342 by 6
4. (a) I weigh a melon.

Then I weigh an apple and the melon.

Write the missing numbers in the sentences below.

The melon weighs grams.

The apple weighs grams.

(b) **How many grams** are in one kilogram?

Put a ring round the correct number below.

1 10 100 1000 10 000
5. (a) There are two children in the Smith family.

The **range** of their ages is **exactly 7 years**.

What could the ages of the two children be?
Give an example.

\[\text{\ldots\ldots. and \ldots\ldots.} \quad 1 \text{ mark} \]

(b) There are two children in the Patel family.

They are twins of the **same age**.

What is the **range** of their ages?

\[\text{\ldots\ldots. years} \quad 1 \text{ mark} \]
6. Here are four fractions.

\[
\begin{align*}
\frac{3}{4} & \quad \frac{1}{8} & \quad \frac{1}{3} & \quad \frac{3}{5}
\end{align*}
\]

Look at the number line below.

Write each fraction in the correct box.
7. (a) Jackie asked 27 people:

‘Do you like school dinners?’

The bar chart shows her results for ‘Yes’ and ‘No’.
Complete the bar chart to show her result for ‘Don’t know’.

(b) This pictogram also shows her results for ‘Yes’ and ‘No’.
Complete the pictogram to show her result for ‘Don’t know’.
8. (a) Complete the sentences.

\[\text{\ldots out of 10 is the same as 70\%} \]

1 mark

\[10 \text{ out of 20 is the same as \ldots .\ldots .\ldots .\ldots .\%} \]

1 mark

(b) Complete the sentence.

\[\text{\ldots out of \ldots .\ldots .\ldots .\ldots . is the same as 5\%} \]

1 mark

Now complete the sentence using different numbers.

\[\text{\ldots out of \ldots .\ldots .\ldots .\ldots . is the same as 5\%} \]

1 mark
9. The shapes below are drawn on square grids.

The diagrams show a rectangle that is rotated, then rotated again.

The centre of rotation is marked •

\[
\text{Rotate 90° clockwise} \quad \rightarrow \quad \text{Rotate another 90° clockwise}
\]

Complete the diagrams below to show the triangle when it is rotated, then rotated again.

The centre of rotation is marked •

\[
\text{Rotate 90° clockwise} \quad \rightarrow \quad \text{Rotate another 90° clockwise}
\]

2 marks
10. I am thinking of a number.

My number **multiplied by 15** is 315
My number **multiplied by 17** is 357

What is my number?

11. Complete the statements below.

When \(x \) is \(8 \), \(4x \) is \(32 \)

When \(x \) is \(\ldots \ldots \), \(4x \) is \(48 \)

When \(x \) is \(\ldots \ldots \), \(4x \) is \(48 \)
12. (a) Look at these three numbers.

\[\begin{align*}
9 & \quad 11 & \quad 10
\end{align*} \]

Show that the **mean** of the three numbers is **10**

1 mark

Explain why the **median** of the three numbers is **10**

1 mark

(b) Four numbers have a mean of 10 and a median of 10, but **none** of the numbers is 10

What could the four numbers be?

Give an example.

\[\begin{align*}
\quad & \quad & \quad & \quad
\end{align*} \]

1 mark
13. The diagram shows triangle PQR.

Work out the sizes of angles \(a \), \(b \) and \(c \)

\[a = \ldots \quad b = \ldots \quad c = \ldots \]
14. Solve these equations.

\[3y + 1 = 16\]

\[y = \text{ \ldots \ldots \ldots \ldots } \quad \text{(1 mark)}\]

\[18 = 4k + 6\]

\[k = \text{ \ldots \ldots \ldots \ldots } \quad \text{(1 mark)}\]

15. Work out

\[374 \times 23\]

\[\ldots \ldots \ldots \ldots \quad \text{(2 marks)}\]
16. (a) P is the midpoint of line AB.

What are the coordinates of point P?

P is (,)

(b) Q is the midpoint of line MN.

The coordinates of Q are (30, 50)

What are the coordinates of points M and N?

M is (,)

N is (,)
17. The diagram shows a **square**.

Two straight lines cut the square into four rectangles.

The area of one of the rectangles is shown.

Work out the area of the rectangle marked A.

\[\text{Area of A} = \] \[\text{cm}^2 \]
18. (a) Look at this information.

Two numbers **multiply** to make zero.

One of the statements below is true.
Tick (✓) the true statement.

- [] Both numbers must be zero.
- [] At least one number must be zero.
- [] Exactly one number must be zero.
- [] Neither number can be zero.

(b) Now look at this information.

Two numbers **add** to make zero.

If one number is **zero**, what is the other number?

If neither number is **zero**, give an example of what the numbers could be.

----------- and -----------
19. I join six cubes face to face to make each 3-D shape below.

Then I join the 3-D shapes to make a **cuboid**.

Draw this cuboid on the grid below.
20. How many eighths are there in one quarter?

Now work out $\frac{3}{4} \div \frac{1}{8}$

21. Solve this equation.

$75 + 2t = 100 - 2t$
22. This shape has been made from two congruent **isosceles** triangles.

What is the size of angle p?

$p = \ldots \ldots \degree$
23. Bumps are built on a road to slow cars down.

The stem-and-leaf diagrams show the speed of 15 cars before and after the bumps were built.

Key:

| 2 | 3 means 23 mph |

Before

<table>
<thead>
<tr>
<th>2</th>
<th>2 7 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0 2 4</td>
</tr>
<tr>
<td>3</td>
<td>5 6 8 9</td>
</tr>
<tr>
<td>4</td>
<td>1 3 4 4 4</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

After

<table>
<thead>
<tr>
<th>2</th>
<th>3 4 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6 6 7 8 8 9</td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 1 2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Use the diagrams to write the missing numbers in these sentences.

Before the bumps:

The maximum speed was mph, and cars went at more than 30 mph.

After the bumps:

The maximum speed was mph, and cars went at more than 30 mph.

2 marks
24. The graph shows the straight line with equation $y = 3x - 4$

(a) A point on the line $y = 3x - 4$ has an x-coordinate of 50
What is the y-coordinate of this point?

(b) A point on the line $y = 3x - 4$ has a y-coordinate of 50
What is the x-coordinate of this point?
END OF TEST