Science test

Paper 1

Please read this page, but do not open the booklet until your teacher tells you to start. Write your name and the name of your school in the spaces below.

First name __

Last name __

School __

Remember

- The test is 1 hour long.
- You will need: pen, pencil, rubber, ruler, protractor and calculator.
- The test starts with easier questions.
- Try to answer all of the questions.
- Write all your answers on the test paper – do not use any rough paper.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

For marker’s use only

Total marks __________________________
1. (a) The photograph below shows a team of dogs called huskies pulling a sledge across the ice.

Huskies need to survive in a cold climate. They must be able to pull a heavy sledge for a long time each day.

Which two features would a dog breeder look for when choosing huskies to breed from?

Choose from the list of features below and give the reason for each choice.

<table>
<thead>
<tr>
<th>blue eyes</th>
<th>fierce nature</th>
<th>long tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>thick fur</td>
<td>short legs</td>
<td>strong muscles</td>
</tr>
</tbody>
</table>

1. feature

reason

1 mark

1 mark

2. feature

reason

1 mark

1 mark
(b) The drawings below show three dogs. They all look different.

(i) Which word describes the differences between these dogs? Tick the correct box.

adaptation reproduction

vaccination variation

(ii) The drawing below shows a puppy. Dog C is the puppy’s mother.

Why does the puppy look like his mother? Tick the correct box.

Information passed from the mother in an egg.

Information passed from the mother in a sperm.

Information passed from the mother in milk.

Information passed from the mother in blood.

maximum 6 marks
2. Two pupils planted lettuce seeds at three different temperatures. They planted the same number of seeds at each temperature.

Their results are shown in the table.

<table>
<thead>
<tr>
<th>temperature, in °C</th>
<th>total number of lettuce seeds germinated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>day 1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) Complete the table to show how many seeds had germinated at 5°C by day 3.

(b) The pupils were trying to find out something about seeds.

Write down the question the pupils were investigating.

__

__
(c) The pupils discussed their results and made the conclusions listed below.

Look at their results in the table and decide whether each conclusion below is **true**, **false** or you **cannot tell**. Tick the correct box for each conclusion.

<table>
<thead>
<tr>
<th>conclusions</th>
<th>true</th>
<th>false</th>
<th>cannot tell</th>
</tr>
</thead>
<tbody>
<tr>
<td>The earliest germination was at 25°C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At 25°C all the seeds germinated by day 6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5°C was too cold for seeds to germinate.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The best temperature for germination was 15°C.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. The diagrams below show a human ovum (egg) and a human sperm.

(a) What are eggs and sperm?
Tick the correct box.

animals []
cells []
organs []

(b) Which part does a sperm use to swim towards an egg?

(c) Give the name of the male reproductive organ where sperm are made.
(d) The diagram below shows a sperm joining with an egg.

What is this process called? Tick the correct box.

- fertilisation
- growth
- nutrition
- respiration

1 mark

maximum 4 marks

(a) Draw a line from each apparatus to the name of the method of separation. Draw only **three** lines.

3 marks

<table>
<thead>
<tr>
<th>diagram of apparatus</th>
<th>method of separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>chromatography</td>
</tr>
<tr>
<td>B</td>
<td>distillation</td>
</tr>
<tr>
<td>C</td>
<td>filtration</td>
</tr>
<tr>
<td></td>
<td>crystallisation</td>
</tr>
</tbody>
</table>
(b) Debbie has a mixture of sand and salt water. Look at the diagrams on the opposite page.

(i) Which apparatus would Debbie use to separate the sand from the salt water? Give the correct letter.

(ii) Which apparatus would she use to separate pure water from the salt water? Give the correct letter.
5. The drawing shows a gold mask from a tomb in Egypt. The gold is still shiny after thousands of years.

(a) What is pure gold? Tick the correct box.

- a compound
- a mixture
- an element
- a solution

(b) The list shows some of the properties of gold.

- It conducts electricity.
- It melts at 1064°C.
- It is yellow.
- It is easily scratched.
- It stays shiny.
- It conducts heat.

(i) Which one of these properties shows that gold does not react with oxygen in the air?

(ii) Which two of the properties above are properties of all metals?

1.
2.
(c) Old iron objects from tombs in Britain are often covered with rust. Iron reacts with oxygen when it rusts.

What else is needed for iron to go rusty? Choose one substance from the list below.

- lead
- nitrogen
- carbon dioxide
- water

1 mark

(d) A box contains a collection of metal objects from a tomb.

What piece of equipment would you use to separate the iron objects from the other metal objects?

1 mark

maximum 6 marks
6. The table below gives information about three fuels that can be used in cars.

✓ shows a substance is produced when the fuel burns.
X shows a substance is not produced when the fuel burns.

<table>
<thead>
<tr>
<th>fuel</th>
<th>physical state</th>
<th>energy released, in kJ/kg</th>
<th>some of the substances produced when the fuel burns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>petrol</td>
<td>liquid</td>
<td>48 000</td>
<td>✓</td>
</tr>
<tr>
<td>hydrogen</td>
<td>gas</td>
<td>121 000</td>
<td>X</td>
</tr>
<tr>
<td>ethanol (alcohol)</td>
<td>liquid</td>
<td>30 000</td>
<td>✓</td>
</tr>
</tbody>
</table>

(a) Which fuel, in the table, releases the least energy per kilogram (kg)?

(b) Some scientists say that if hydrogen is burned as a fuel there will be less pollution.
From the information in the table, give one reason why there will be less pollution.

(c) Which of the three fuels in the table can be compressed into a small container?

1 mark

1 mark

1 mark
(d) Which gas in the air is needed for fuels to burn? Tick the correct box.

[] carbon dioxide
[] nitrogen
[] oxygen
[] water vapour

1 mark

(e) Petrol and ethanol are both fuels. Petrol is made from oil. Scientists say that oil could run out in 100 years. In some countries people plant sugar cane and use it to make ethanol.

Sugar cane will **not** run out. Explain why.

__

__

__

1 mark

maximum 5 marks
7. Some children watched an eclipse of the Sun. During the eclipse, the Moon passed between the Sun and the Earth. It blocked out sunlight.

(a) Amrik watched the eclipse. He knew that the Sun is much bigger than the Moon but they looked about the same size.

Why did they look the same size? Tick the correct box.

1 mark

- The Moon is nearer to the Earth than the Sun is.
- The Sun is nearer to the Earth than the Moon is.
- The Sun goes round the Earth faster than the Moon does.
- The Moon goes round the Sun faster than the Earth does.
(b) Amrik’s class measured the light level during the eclipse. The graph below shows their results.

(i) At what time did the Moon block out most of the Sun's light? Use the graph to help you.

_______ am

1 mark

(ii) What happened to the air temperature during the eclipse?

Give the reason for your answer.

1 mark

maximum 3 marks
8. Lee blew across the top of paper tubes to make sounds. He investigated how changing the length of a tube affects the pitch of the sound.

(a) What equipment could he use to measure the length of the tubes? Tick the correct box.

(b) The photograph below shows the different lengths of tubes Lee used.

Suggest one way his test might not have been fair.

1 mark
(c) Lee made a prediction.

Which of these statements is a prediction?
Tick the correct box.

1 mark

- The tubes were made of paper.
- The pitch of the sound is how high or low it is.
- The longer tube will make a lower sound.
- The sound is caused by the vibration of air.

(d) Lee blew across the ends of 3 different lengths of tube and compared the pitch of the sound produced.

His results are shown below.

<table>
<thead>
<tr>
<th>Length of the tube, in cm</th>
<th>Pitch of the sound</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>high</td>
</tr>
<tr>
<td>25</td>
<td>medium</td>
</tr>
<tr>
<td>50</td>
<td>low</td>
</tr>
</tbody>
</table>

Which length of tube made the sound with the highest pitch?

_______ cm

1 mark

maximum 4 marks
9. Thunder and lightning happen at the same time.

(a) We see the flash of lightning before we hear the thunder. Give the reason for this.

(b) Omar investigated the movement of a storm. He measured the time between seeing a flash of lightning and hearing the thunder. He did this six times. Omar put his results in a table.

<table>
<thead>
<tr>
<th>flash of lightning</th>
<th>time between seeing the lightning and hearing the thunder, in seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8.0</td>
</tr>
<tr>
<td>B</td>
<td>5.0</td>
</tr>
<tr>
<td>C</td>
<td>3.0</td>
</tr>
<tr>
<td>D</td>
<td>9.0</td>
</tr>
<tr>
<td>E</td>
<td>13.0</td>
</tr>
<tr>
<td>F</td>
<td>16.5</td>
</tr>
</tbody>
</table>
Omar drew a bar chart of his results as shown below.

(i) On the bar chart, draw a bar for flash D. Use a ruler.

(ii) Which flash of lightning was closest to Omar? Give the correct letter.

(iii) Describe how the distance between the storm and Omar changed as the storm moved between flash A and flash F.

maximum 4 marks
10. The drawing shows Mark’s house. He uses three methods to generate electricity.

(a) Draw a straight line from each of the two methods below to the main energy resource used to generate electricity. Draw only two lines.

<table>
<thead>
<tr>
<th>method</th>
<th>energy resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>solar cells</td>
<td>air movement</td>
</tr>
<tr>
<td>petrol generator</td>
<td>chemicals</td>
</tr>
<tr>
<td></td>
<td>sunlight</td>
</tr>
<tr>
<td></td>
<td>heat</td>
</tr>
</tbody>
</table>
(b) (i) The solar cells **cannot** work at night. Give the reason for this.

1 mark

(ii) The wind turbine **cannot** generate electricity all the time. Give the reason for this.

1 mark

maximum 4 marks
11. The drawings show a human, a chaffinch, a dog and a whale.

One of these animals is a bird. The other three are mammals.

(a) Which group do all four animals belong to?

1 mark
(b) The drawings below show the bones of the front limbs of the four animals. Some of the bones of the human limb are labelled.

On the drawings, label:

(i) the ulna of the chaffinch;
1 mark

(ii) the radius of the dog;
1 mark

(iii) the humerus of the whale.
1 mark

(c) Describe how the shape of the front limb of the whale is adapted for moving in water.
1 mark

(d) The bones of birds are hollow. How does this help birds to fly?
1 mark

maximum 6 marks
12. (a) When tobacco is burned in cigarettes, carbon monoxide is formed. A device called a ‘Smokerlyzer’ measures the percentage of carbon monoxide in a person’s breath. This indicates the percentage of carbon monoxide in the person’s blood.

Four people tested their breath using a ‘Smokerlyzer’ as shown below. They repeated the test every two hours during one day at work.

The results are shown in the table.

<table>
<thead>
<tr>
<th>name</th>
<th>percentage of carbon monoxide in the blood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9 am</td>
</tr>
<tr>
<td>Amy</td>
<td>3.6</td>
</tr>
<tr>
<td>Don</td>
<td>1.8</td>
</tr>
<tr>
<td>Kisham</td>
<td>6.3</td>
</tr>
<tr>
<td>Pat</td>
<td>0.5</td>
</tr>
</tbody>
</table>
(i) Look at the table opposite. Which **two** people are most likely to have smoked tobacco before 9 am?

_____________________________ and _____________________________

1 mark

(ii) Don says he is a **non**-smoker. Suggest one other way carbon monoxide could have got into Don’s blood before he came to work that day.

__

1 mark

(b) Red blood cells transport oxygen from the lungs to the muscles. If the air we breathe in contains carbon monoxide, the red blood cells will take up carbon monoxide instead of oxygen.

Use this information to explain why, when they are running, many smokers become out of breath sooner than **non**-smokers do.

__

__

__

__

2 marks

maximum 4 marks
13. (a) The diagrams below show an animal cell and a plant cell.

(i) The lines from the boxes show the positions of two of the parts that are present in both cells. In the boxes, write the names of these two parts. 2 marks

(ii) Give the names of two parts that are present in plant cells but not in animal cells.

1. ____________________________________

2. ____________________________________
(b) Organs can carry out their functions because of the special cells they have.

Draw a straight line from the name of each type of cell to the function of the cell and then to the process it carries out. One has been done for you.

3 marks

<table>
<thead>
<tr>
<th>Cell</th>
<th>Function</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>white blood cell</td>
<td>absorbs light</td>
<td>to prevent disease</td>
</tr>
<tr>
<td>leaf cell</td>
<td>transports oxygen</td>
<td>to digest food</td>
</tr>
<tr>
<td>cell in the intestine</td>
<td>traps micro-organisms</td>
<td>for respiration</td>
</tr>
<tr>
<td>red blood cell</td>
<td>produces enzymes</td>
<td>for photosynthesis</td>
</tr>
</tbody>
</table>

maximum 7 marks
14. Shuli investigated differences between physical and chemical changes.

She put three chemicals in separate crucibles and weighed each one. She heated each crucible as shown below. She weighed each crucible again when it had cooled down.

She recorded her observations in a table as shown below.

<table>
<thead>
<tr>
<th>experiment</th>
<th>name of chemical</th>
<th>observations</th>
<th>change in mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>magnesium (a silvery solid)</td>
<td>The silvery magnesium burned brightly in air. A white powder was formed.</td>
<td>increase</td>
</tr>
<tr>
<td>B</td>
<td>potassium permanganate (purple crystals)</td>
<td>The purple crystals crackled and turned black. A colourless gas was given off.</td>
<td>decrease</td>
</tr>
<tr>
<td>C</td>
<td>zinc oxide (a white powder)</td>
<td>The white powder turned pale yellow on heating. It turned white again on cooling.</td>
<td>no change</td>
</tr>
</tbody>
</table>
(a) (i) In experiment A, magnesium reacts with a gas in the air.

Complete the word equation for the reaction in experiment A.

\[
\text{magnesium} + \text{________________________} \rightarrow \text{________________________} \quad 2 \text{ marks}
\]

(ii) Explain the increase in mass in experiment A. Use your word equation to help you.

\[
\text{________________________}
\]

\[
\text{________________________}
\]

1 mark

(b) The gas given off in experiment B re-lit a glowing splint. Give the name of this gas.

\[
\text{________________________} \quad 1 \text{ mark}
\]

(c) Name the white powder left at the end of experiment C.

\[
\text{________________________} \quad 1 \text{ mark}
\]

(d) In each experiment, did a chemical change or a physical change take place? Tick one box for each experiment.

<table>
<thead>
<tr>
<th>experiment</th>
<th>chemical change</th>
<th>physical change</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 mark

maximum 6 marks
15. (a) Methane can be a gas, a liquid or a solid. In the diagram below, arrows P, Q, R and S represent changes of state.

The boxes on the right show the arrangement of particles of methane in the three different physical states. Each circle represents a particle of methane.

(i) Draw a line from each physical state of methane to the arrangement of particles in that physical state. Draw only three lines.

(ii) Arrows P, Q, R and S represent changes of state. Which arrow represents:

- evaporation? _______
- melting? _______
(b) Methane is the main compound in natural gas. The scale below shows the melting point and the boiling point of methane.

<table>
<thead>
<tr>
<th>Melting Point</th>
<th>Boiling Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>–183°C</td>
<td>–162°C</td>
</tr>
</tbody>
</table>

Methane has three physical states: solid, liquid and gas.

(i) What is the physical state of methane at –170°C?

(ii) The formula of methane is CH₄. The symbols for the two elements in methane are C and H.

Give the names of these two elements.

element C ____________________________ 2 marks

element H ____________________________

(iii) When methane burns, it reacts with oxygen. One of the products is water, H₂O.

Give the name of the other product.

______________________________ 1 mark
16. The back window of this car contains a heating element. The heating element is part of an electrical circuit connected to the battery of the car.

The diagrams below show two ways of connecting the circuit of a heating element.

(a) Give the name of each type of circuit:

- circuit A ____________________________
- circuit B ____________________________
(b) A wire gets broken at point X on circuit A and at point Y on circuit B.

![Diagram of circuits A and B]

When the switch is closed, how does the broken wire affect the heating element in:

(i) circuit A?

(ii) circuit B?

1 mark

1 mark

(c) In very cold weather, ice may form on the back window of the car. When the heating element is switched on, the ice will disappear and the surface of the window will become clear and dry.

(i) Fill the gap below to show the energy transfer that takes place.

When the heater is switched on, ________________ energy is transferred from the wires to the ice.

1 mark

(ii) As the window becomes clear and dry, physical changes take place in the ice. Fill the gaps below to show the physical changes which take place.

from ________________ to ________________ to ________________

maximum 5 marks
17. The diagram below shows the orbits of Neptune, Pluto and the Earth. At two points, A and B, the orbits of Neptune and Pluto cross over each other.

(a) What force keeps planets in orbit around the Sun?

1 mark
(b) Give **two** reasons why it takes Pluto more time than Neptune to orbit the Sun.

1.

2.

(c) (i) Tom can see the Sun because it is a light source. It gives out its own light. Neptune and Pluto are **not** light sources but Tom can see them when he looks through his telescope.

Explain why Tom can see Neptune and Pluto even though they are **not** light sources.

(ii) Between points A and B, Pluto is nearer than Neptune to the Earth. Tom noticed that Pluto is **not** as bright as Neptune, even when Pluto is closer than Neptune to the Earth.

Give **one** reason why Pluto is **not** as bright as Neptune.
18. Joe saw two types of swing in the park.

He noticed that the time for one complete swing, forward and back, was different for the two types of swing.

He did not know whether the length of the chains or the mass of the person affected the time for one complete swing.

He made model swings and measured how long it took for 10 complete swings in 4 investigations.

Here are his results.

<table>
<thead>
<tr>
<th>investigation</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>length of string, in cm</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>mass of plasticine, in g</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>time for 10 complete swings, in s</td>
<td>10.0</td>
<td>10.0</td>
<td>14.2</td>
<td>17.4</td>
</tr>
</tbody>
</table>
Here is Joe’s conclusion:

Changing the mass of the plasticine has no effect on the time taken for 10 complete swings.

(a) Which two of his investigations, A, B, C or D, provided evidence to support his conclusion?

_______ and _______

1 mark

(b) Look at the results table.

(i) Describe how the length of the string affects the time for 10 complete swings.

(ii) Which three of his investigations are best evidence for this?

_______ and _______ and _______

1 mark

(c) Use his previous table of results to predict the times for 10 complete swings in two further investigations, E and F. Write your answers in the table below.

<table>
<thead>
<tr>
<th>investigation</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>length of string, in cm</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>mass of plasticine, in g</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>time for 10 complete swings, in s</td>
<td>---------</td>
<td>---------</td>
</tr>
</tbody>
</table>

maximum 4 marks